


Arrigo et al. (2008) “Impact of a shrinking Arctic ice
cover on marine primary production”
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Cheung et al. (2010), “Large-scale redistribution of maximum fisheries catch
potential in the global ocean under climate change”
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Figure 12. Age-1 pollock (Theragra chalcogramma) recruit-
ment on the eastern Bering Sea shelf during the study period

(Table 1.22 in lanelli et al., 2009).
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BESTMAS model
(Zhang et al. 2010)

+ custom NPZ model
(Banas et al., submitted)

+ four special issues’ worth of
results from a huge, multi-
disciplinary field program
(BEST/BSIERP, 2007-10)
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~200,000 model variants later:

the observed magnitude of the spring bloom (huge) and observed timing of the spring
bloom (not especially early) are only possible if the phytoplankton community is less
light-sensitive when light is low. This raises more questions than it answers!
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Major results from the Bering NPZ model:

1) Primary production is higher in warm, low-ice years
(opposite the pattern in the large zooplankton)

2) Variations in total primary production (Feb—Jul) and
variations in the timing of the spring bloom are
independent, uncorrelated in the south

(Given this, what do we really need to know about
primary production and climate?)
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Calanus hyperboreus

(Arctic)?
C. glacialis
(Arctic)?

C. finmarchicus
(Arctic)?
Metridia longa
(Greenland Sea)®d
C. finmarchicus
(North Atlantic)®

C. helgolandicus
(North Sea)"9

C. helgolandicus
(Subtropics)®

Neocalanus gracilis
(Tropics)"

N. robustior
(Tropics)®"

G. Kattner and W. Hagen (2008)
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Fig. 11.1 General trends of total lipid content (% of dry mass) and wax esters (% of total lipids)
of large copepod species (CV to females) from the Arctic to the tropics. Data compiled from *Lee
et al. (2006), "Hagen (unpublished data), Lee (1975), ‘Lee et al. (1971), <Jénasdéttir (1999),
'Gatten et al. (1979), #Kattner and Krause (1989), "Kattner (unpublished data)

(note: species #
lipid composition)



Region-specific shifts in zooplankton community composition

Bering Sea (60°N)
warm years;

US Pacific Northwest (45°N)
warm decades

C. hyperboreus,
C. glacialis vs
C. finmarchicus

North Sea
warming trend, 1960s—

C. finmarchicus vs C. helgolandicus: ImpaCtS. on POllOCka. salmon, COd’
cf. recent work by Robert Wilson, forage fish like herring and sandeels,

Strathclyde Math d Stat I
rathclyde Maths and Stats seabirds, whales....



|dea: to model climate impacts on fish, birds, and mammals,
model the life-history strategy of their prey

Overwinter survival
(function of phytoplankton
phenology, temperature)

Value as prey

Optimizing reproductive
timing (also a function of
phytoplankton phenology,
temperature)




Past approaches

Optimal annual routines for copepod Emergent copepod communities
populations via state-dependent dynamic from a genetic algorithm with explicit
programming (Varpe et al. 2007, 2009; cf. coupling through losses to predation
Houston & McNamara 1999, Clark & Mangel 2000)  (Record et al. 2013)

focus on trait-based

reserves and

o metacommunity
timing

Coltrane (Copepod Life-history traits and adaptation to novel environments)

> Sf/- v J A
(/Cf(//. .
c?/b/
reserves devgtgg?gntal ~ survivorship N >  population:
= annual cycle,
ad—4 net growth rate
X
small number of variable traits » community

associated with a
given environment



Annual mean surface temperature (°C)

3/yr

“metabolic

arithmetic” for a

single species/
2 strategy case:
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earlyiceretreat=" Date of ice retreat  late ice retreat = obs. copepod biomass
late spring bloom early pelagic bloom, 5 (Stabeno et al. 2012)
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Large-scale
biogeographic patterns

Time variability in one system

Coexistence of multiple (vears to decades)

strategies in one
environment



Gaussian window of prey availability; As in Bering case but optimizing across
temperature held constant a timing trait: tegg = delay between
maturation and egg production
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Gaussian window of prey availability; As in Bering case but optimizing across
temperature held constant a timing trait: tegg = delay between

maturation and egg production
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Surface temperature (°C)
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Alcaraz et al. (2014)
found a metabolic
tipping point for C.

* glacialis at 6°C—

"—but this

appears to be a
population-level
response or
strategy, not a
fundamental
constraint



Large-scale
biogeographic patterns

Time variability in one system

Coexistence of multiple (vears to decades)

strategies in one
environment:
Disko Bay, West
Greenland
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Generation length (yrs)
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neilbanas.com/projects/
Where from here? neilbanas.com/projects/positions-available

— How does phytoplankton community light response vary seasonally, and why,
and how should we theorize it in models? (Are there existing datasets we have not
fully exploited? How far behind the observational cutting edge is the modeling
community on this front?)

— Can we refine and combine existing DVM and diapause models into a unified
view of zooplankton behaviour and energetics across light and ice regimes? (How
far can we push Arctic ABC as a laboratory for quantifying the tradeoffs?)

— What are the viable ways to be a copepod in the Arctic basin (with and without
advective links to elsewhere)? Is the answer going to change with climate
change? (Coltrane could run as a “translation layer” atop SINMOD, Nemo/
Medusa, other pan-Arctic or IPCC-class models.) A depressing hypothesis to test:

In ice-influenced seas, climate change will bring a shift toward lower quality prey for fish,
birds, and mammals (in terms of lipid content and size), to a degree that outweighs
accompanying increases in primary production.

(Especially interesting to find hotspots where the hypothesis is wrong....)



